首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   139篇
  免费   0篇
  国内免费   5篇
安全科学   4篇
废物处理   4篇
环保管理   14篇
综合类   22篇
基础理论   25篇
污染及防治   42篇
评价与监测   19篇
社会与环境   14篇
  2023年   2篇
  2022年   11篇
  2021年   10篇
  2020年   1篇
  2019年   5篇
  2018年   6篇
  2017年   6篇
  2016年   5篇
  2015年   5篇
  2014年   6篇
  2013年   5篇
  2012年   8篇
  2011年   6篇
  2010年   9篇
  2009年   6篇
  2008年   7篇
  2007年   5篇
  2006年   4篇
  2005年   3篇
  2004年   3篇
  2003年   3篇
  2002年   2篇
  2000年   4篇
  1998年   2篇
  1990年   1篇
  1989年   2篇
  1988年   3篇
  1987年   3篇
  1984年   1篇
  1978年   1篇
  1977年   1篇
  1973年   1篇
  1972年   1篇
  1967年   1篇
  1965年   1篇
  1964年   1篇
  1958年   2篇
  1957年   1篇
排序方式: 共有144条查询结果,搜索用时 109 毫秒
71.
Environmental Science and Pollution Research - Advancements in telecommunication sector result in increasing exposure to electromagnetic (EM) radiation, which has been correlated with incidence of...  相似文献   
72.
Environmental Science and Pollution Research - The current scenario of increased population and industrial advancement leads to the spoliation of freshwater and tapper of the quality of water....  相似文献   
73.
The broad climatological features associated with the Asian monsoon circulation, including its mean state and intraseasonal and interannual variability over the Indian subcontinent as simulated in the National Center for Atmospheric Research (NCAR) global coupled climate system model (CSM) in its control reference experiment, are presented in this paper. The CSM reproduces the seasonal cycle as well as basic observed patterns of key climatic parameters reasonably well in spite of some limitations in simulation of the monsoon rainfall. However, while the seasonality in rainfall over the region is simulated well, the simulated area-averaged monsoon rainfall is underestimated to only about 60% of the observed rainfall. The centers of maxima in simulated monsoon rainfall are slightly displaced southward as compared to the climatological patterns. The cross-equatorial flow in simulated surface wind patterns during summer is also stronger than observed with an easterly bias. The transient experiment with a 1% per year compound increase in CO2 with CSM suggests an annual mean area-averaged surface warming of about 1.73 °C over the region at the time of CO2 doubling. This warming is more pronounced in winter than during the monsoon season. A net increase in area-averaged monsoon rainfall of about 1.4 mm day–1, largely due to increased moisture convergence and associated convective activity over the land, is obtained. The enhanced intraseasonal variability in the monsoon rainfall in a warmer atmosphere is confined to the early part of the monsoon season which suggests the possibility of the date of onset of summer monsoon over India becoming more variable in future. The enhanced interannual and intraseasonal variability in the summer monsoon activity over India could also contribute to more intense rainfall spells over the land regions of the Indian subcontinent, thus increasing the probability of extreme rainfall events in a warmer atmosphere. Electronic Publication  相似文献   
74.
Soil erosion and the global carbon budget   总被引:62,自引:0,他引:62  
Soil erosion is the most widespread form of soil degradation. Land area globally affected by erosion is 1094 million ha (Mha) by water erosion, of which 751 Mha is severely affected, and 549 Mha by wind erosion, of which 296 Mha is severely affected. Whereas the effects of erosion on productivity and non-point source pollution are widely recognized, those on the C dynamics and attendant emission of greenhouse gases (GHGs) are not. Despite its global significance, erosion-induced carbon (C) emission into the atmosphere remains misunderstood and an unquantified component of the global carbon budget. Soil erosion is a four-stage process involving detachment, breakdown, transport/redistribution and deposition of sediments. The soil organic carbon (SOC) pool is influenced during all four stages. Being a selective process, erosion preferentially removes the light organic fraction of a low density of <1.8 Mg/m(3). A combination of mineralization and C export by erosion causes a severe depletion of the SOC pool on eroded compared with uneroded or slightly eroded soils. In addition, the SOC redistributed over the landscape or deposited in depressional sites may be prone to mineralization because of breakdown of aggregates leading to exposure of hitherto encapsulated C to microbial processes among other reasons. Depending on the delivery ratio or the fraction of the sediment delivered to the river system, gross erosion by water may be 75 billion Mg, of which 15-20 billion Mg are transported by the rivers into the aquatic ecosystems and eventually into the ocean. The amount of total C displaced by erosion on the earth, assuming a delivery ratio of 10% and SOC content of 2-3%, may be 4.0-6.0 Pg/year. With 20% emission due to mineralization of the displaced C, erosion-induced emission may be 0.8-1.2 Pg C/year on the earth. Thus, soil erosion has a strong impact on the global C cycle and this component must be considered while assessing the global C budget. Adoption of conservation-effective measures may reduce the risks of C emission and sequester C in soil and biota.  相似文献   
75.
Gypsum has been applied as a natural fertilizer and soil amendment for centuries in agriculture for providing crop nutrients such as Ca and S, and for improving soil physical properties. Recently, gypsum has been tested for sequestrating CO2 from the air and for capturing soluble phosphates in the soil, through formation of insoluble calcium phosphates and carbonates. However, the environmental factors controlling these sequestration processes have not been systemically studied. Here, we calculate optimal conditions of sequestration using chemical equilibrium modeling. Our results show that CO2 carbonation is effective at pH higher than 8.5 at atmospheric concentration. The removal of P is higher than 80 % for pH higher than 6.4, when Ca and P are at stoichiometric ratio. Also, placement of gypsum in subsoil is more effective for CO2 capture than applying it on soil surface since soil pores often contain higher concentrations of CO2 due to the soil respiration process. Overall, increases in medium pH, gypsum application rate, or CO2 partial pressure can increase the effectiveness of the amendment.  相似文献   
76.
Environmental Chemistry Letters - With rising atmospheric carbon dioxide (CO2) concentrations globally, there is an urgent need for highly efficient CO2 capture technologies. This report introduces...  相似文献   
77.
Development of an algorithm for an EEG-based driver fatigue countermeasure   总被引:6,自引:0,他引:6  
PROBLEM: Fatigue affects a driver's ability to proceed safely. Driver-related fatigue and/or sleepiness are a significant cause of traffic accidents, which makes this an area of great socioeconomic concern. Monitoring physiological signals while driving provides the possibility of detecting and warning of fatigue. The aim of this paper is to describe an EEG-based fatigue countermeasure algorithm and to report its reliability. METHOD: Changes in all major EEG bands during fatigue were used to develop the algorithm for detecting different levels of fatigue. RESULTS: The software was shown to be capable of detecting fatigue accurately in 10 subjects tested. The percentage of time the subjects were detected to be in a fatigue state was significantly different than the alert phase (P<.01). DISCUSSION: This is the first countermeasure software described that has shown to detect fatigue based on EEG changes in all frequency bands. Field research is required to evaluate the fatigue software in order to produce a robust and reliable fatigue countermeasure system. IMPACT ON INDUSTRY: The development of the fatigue countermeasure algorithm forms the basis of a future fatigue countermeasure device. Implementation of electronic devices for fatigue detection is crucial for reducing fatigue-related road accidents and their associated costs.  相似文献   
78.
World crop residues production and implications of its use as a biofuel   总被引:14,自引:0,他引:14  
Reducing and off-setting anthropogenic emissions of CO(2) and other greenhouse gases (GHGs) are important strategies of mitigating the greenhouse effect. Thus, the need for developing carbon (C) neutral and renewable sources of energy is more than ever before. Use of crop residue as a possible source of feedstock for bioenergy production must be critically and objectively assessed because of its positive impact on soil C sequestration, soil quality maintenance and ecosystem functions. The amount of crop residue produced in the US is estimated at 367x10(6) Mg/year for 9 cereal crops, 450x10(6) Mg/year for 14 cereals and legumes, and 488x10(6) Mg/year for 21 crops. The amount of crop residue produced in the world is estimated at 2802x10(6) Mg/year for cereal crops, 3107x10(6) Mg/year for 17 cereals and legumes, and 3758x10(6) Mg/year for 27 food crops. The fuel value of the total annual residue produced is estimated at 1.5x10(15) kcal, about 1 billion barrels (bbl) of diesel equivalent, or about 8 quads for the US; and 11.3x10(15) kcal, about 7.5 billion bbl of diesel or 60 quads for the world. However, even a partial removal (30-40%) of crop residue from land can exacerbate soil erosion hazard, deplete the SOC pool, accentuate emission of CO(2) and other GHGs from soil to the atmosphere, and exacerbate the risks of global climate change. Therefore, establishing bioenergy plantations of site-specific species with potential of producing 10-15 Mg biomass/year is an option that needs to be considered. This option will require 40-60 million hectares of land in the US and about 250 million hectares worldwide to establish bioenergy plantations.  相似文献   
79.
Rising global population would force farmers to amplify food production substantially in upcoming 3–4 decades. The easiest way to increase grain production is through expanding cropping area by clearing uncultivated land. This is attained by permitting deadly loss of carbon (C) stocks, jeopardizing ecosystem biodiversity and deteriorating environmental quality. We aim to propose key agronomical tactics, livestock management strategy and advance approaches for aquaculture to increase productivity and simultaneously reduce the environmental impacts of farming sector. For this, we considered three major sectors of farming, i.e. agriculture, fishery and dairy. We collected literatures stating approaches or technologies that could reduce GHG emission from these sectors. Thereafter, we synthesized strategies or options that are more feasible and accessible for inclusion in farm sector to reduce GHG emission. Having comprehensively reviewed several publications, we propose potential strategies to reduce GHG emission. Agronomic practices like crop diversification, reducing summer fallow, soil organic carbon sequestration, tillage and crop residue management and inclusion of N2-fixing pulses in crop rotations are some of those. Livestock management through changing animals’ diets, optimal use of the gas produced from manures, frequent and complete manure removal from animal housing and aquaculture management strategies to improve fish health and improve feed conversion efficiency could reduce their GHG emission footprint too. Adapting of effective and economic practices GHG emission footprint reduction potential of farming sector could make farming sector a C neutral enterprise. To overcome the ecological, technological and institutional barriers, policy on trade, tax, grazing practice and GHG pricing should be implemented properly.  相似文献   
80.
Environmental Science and Pollution Research - Reversible hydrogen storage in MgH2 under specified conditions is a possible way for the positive reception of hydrogen economy, in which the...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号